Nonlinear Dynamics, Fractals, and Chaos Theory:
Implications for Neuroautonomic Heart Rate Control in Health and Disease
by Ary L. Goldberger

|. Basic Concepts

Clinicians and basic investigators are increasingly aware of the remarkable upsurge of interest in
nonlinear dynamics, the branch of the sciences widely referred to as "chaos theory." Those
attempting to evaluate the biomedical relevance of this field confront a daunting array of terms
and concepts, such as nonlinearily, fractals, periodic oscillations, bifurcations and complexity, as
well as chaos (1-4). Therefore, the present discussion provides an introduction to some key
aspects of nonlinear dynamics, with a particular emphasis on heart rate control. A major
challenge is in making these concepts accessible, not only to basic and clinical investigators, but

to medical and graduate students at a formative stage of their training.

A. Introduction: The Concept of a Time Series

To appreciate the general clinical relevance of dynamics to the heartbeat, consider the
following common problem. What is the best way to compare a sequence of
measurements obtained from two subjects, or from one individual or experimental
procedure under different conditions? Conventionally, clinicians and investigators rely
primarily on a comparison of means using appropriate statistical tests. However, the
limitations of such traditional analyses become apparent when evaluating the data in
Fig. 1, showing sinus rhythm heart rate plots collected from a healthy subject and one
with congestive heart failure. Recording the instantaneous signal from any system over
a continuous observation period generates a fime series. What is noteworthy in this
example is that these two time series have nearly identical means and variances,
suggesting no clinically relevant differences. Yet, visual inspection indicates that the two
sequences of data display a markedly different organization. The healthy heartbeat
trace shows a complex, "noisy" type of variability, whereas the data set from the patient
with heart failure reveals periodic oscillations in heart rate repeating about 1
cycle/minute (~.02 Hz). Time series analysis is concerned with quantifying the order of
data points; nonlinear dynamics provides a deeper understanding of the mechanisms of

patterns and differences such as those in Fig. 1.
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Figure 1. Two heart rate time series, one from a healthy subject (top) and the other from a
patient with severe congestive heart failure (CHF) (middle) have nearly identical means and
variances (bottom), yet very different dynamics. Note that according to classical physiological
paradigms based on homeostasis, neuroautonomic control systems should be designed to damp
out noise and settle down to a constant equilibrium-like state. However, the healthy heartbeat
displays highly complex, apparently unpredictable fluctuations even under steady-state
conditions. In contrast, the heart rate pattern from the subject with heart failure shows slow,
periodic oscillations that correlate with Cheyne-Stokes breathing.



B. Linear versus Nonlinear Systems

In linear systems, the magnitude of the output ()) is controlled by that of the input (X)
according to simple equations in the familiar form y=mx+b. A well-known example of
such a relationship is Ohm's law: V=IR where the voltage (V) in a circuit will vary linearly
with current (1), provided the resistance (R) is held constant. Two central features of
linear systems are proportionality and superposition. Proportionality means that the
output bears a straightline relationship to the input. Superposition refers to the fact that
the behavior of linear systems composed of multiple components can be fully
understood and predicted by dissecting out these components and figuring out their
individual input-output relationships. The overall output will simply be a summation of
these constituent parts. The components of a linear system literally "add up" - there are
no surprises or anomalous behaviors.

In contrast, even simple nonlinear systems violate the principles of proportionality and
superposition. An example of a deceptively complex nonlinear equation is y = ax (7-x),
referred to as the /ogistic equation in population biology (5). The nonlinearity of this
equation, which describes a parabola, arises from the quadratic (x) term. Changes in
the output as a function of sequential time steps can be readily plotted by a feedback
procedure in which the current value of the output becomes the next value of the input,
and so on. lteration of the simple-in-form logistic equation reveals dynamics that are
extraordinarily complex; depending on the value of the single parameter, g, the same
equation can generate steady states, regular oscillations, or highly erratic behavior (4,
5). Thus, for nonlinear systems, proportionality does not hold: small changes can have
dramatic and unanticipated effects. An added complication is that nonlinear systems
composed of multiple subunits cannot be understood by analyzing these components
individually. This reductionist strategy fails because the components of a nonlinear
network interact, i.e., they are coupled. Examples include the "cross-talk" of pacemaker
cells in the heart or neurons in the brain. Their nonlinear coupling generates behaviors
that defy explanation using traditional (linear) models (Fig. 2). As a result, they may
exhibit behavior that is characteristic of nonlinear systems, such as self-sustained,
periodic waves (e.g., ventricular tachycardia) (6, 7); abrupt changes (e.g., sudden onset

of a seizure) (8) and, possibly, chaos (see below). Table 1 gives a more complete, but

not exhaustive list of nonlinear mechanisms with potential relevance to biology and
medicine (1-4, 6-14).
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Figure 2. Examples of nonlinear dynamics of the heartbeat. Panels (a-c) are from subjects with
obstructive sleep apnea syndrome. Panels (d and €) are from healthy subjects at high altitude
(~15,000 ft).



A related and noteworthy property of nonlinear dynamics is referred to as universality
(1, 4). Surprisingly, nonlinear systems that appear to be very different in their specific
details may exhibit certain common patterns of response. For instance, nonlinear
systems may change in a sudden, discontinuous fashion. One important and universal
class of abrupt, nonlinear transitions is called a b/ifurcation (1, 9). This term describes
situations where a very small increase or decrease in the value of some parameter
controlling the system causes it to change abruptly from one type of behavior to
another. For example, the output of the same system may suddenly go from being
wildly irregular to a highly periodic, or vice versa. A universal class of bifurcations
occurring in a wide variety of nonlinear systems is the sudden appearance of regular
oscillations that alternate between two values (15). This type of dynamic may underlie a
variety of a/fernans patterns in cardiovascular dysfunction. A familiar example is the
beat-to-beat alternation in QRS axis and amplitude seen in some cases of cardiac
tamponade (16). This kind of electrical alternans is related to the back and forth
swinging motion of the heart within the pericardial effusion. Multiple other examples of
alternans in perturbed cardiac physiology have been described, including ST-T
alternans which may precede ventricular fibrillation (17), and pulsus alternans during
heart failure.

C. Chaos

Although the focus of much recent attention, chaos per se actually comprises only one
specific subtype of nonlinear dynamics. Prior to the work of the renowned French
mathematician, Henri Poincaré, in the early 1900s, science was dominated by the
seemingly inviolable tenet that the behavior of systems for which one could write out
explicit equations (e.g., the solar system) should be, in principle, fully predictable for all
future times (18). What Poincaré discovered (and what was more recently rediscovered)
is that a complex type of variability can arise from the operation of even the simplest
nonlinear system, such as that governed by the logistic equation mentioned earlier.
Because the equations of motion which generate such erratic, and apparently
unpredictable behavior do not contain any random terms, this mechanism is now
referred to as deterministic chaos (1, 4). The colloquial use of the term chaos - to
describe unfettered randomness, usually with catastrophic implications - is quite
different from this specialized usage.

The extent to which chaos relates to physiological dynamics is a subject of active

investigation and some controversy. At first it was widely assumed that chaotic



fluctuations were produced by pathological systems such as cardiac electrical activity
during atrial or ventricular fibrillation (19). However, this initial presumption has been
challenged (20) and the weight of current evidence does not support the view that the
irregular ventricular response in atrial fibrillation or that ventricular fibrillation itself
represents deterministic cardiac chaos (21). Further, there is no convincing evidence
that other arrhythmias sometimes labeled "chaotic," such as multifocal atrial
tachycardia, meet the technical criteria for nonlinear chaos. An alternative hypothesis
(22) is that the subtle but complex heart rate fluctuations observed during normal sinus
rhythm in healthy subjects, even at rest, are due in part to deterministic chaos, and that
a variety of pathologies, such as congestive heart failure syndromes, may involve a
paradoxical decrease in this type of nonlinear variability (Fig. 1). Because the
mathematical algorithms designed for detecting chaos are not reliably applied to
nonstationary, relatively short and often noisy data sets obtained from most clinical and
physiological studies, the intriguing question of the role, if any, of chaos in physiology or

pathology remains unresolved (22-28).

D. Fractal Anatomy

The term fractal/is a geometric concept related to, but not synonymous with chaos (29,
30). Classical geometric forms are smooth and regular and have integer dimensions
(1,2, and 3, for line, surface, and volume respectively). In contrast, fractals are highly
irregular and have non-integer, or fractional, dimensions. Consider a fractal line. Unlike
a smooth Euclidean line, a fractal line, which has a dimension between 1 and 2, is
wrinkly and irregular. Examination of these wrinkles with the low-power lens of a
microscope, reveals smaller wrinkles on the larger ones. Further magnification shows
yet smaller wrinkles, and so on. A fractal, then, is an object composed of subunits (and
sub-subunits) that resemble the larger scale structure, a property known as self-
similarity (Fig. 3). A wide variety of natural shapes share this internal look-alike
property, including branching trees and coral formations, wrinkly coastlines, and ragged
mountain ranges. A number of cardiopulmonary structures also have a fractal-like
appearance (2, 3, 30, 31). Examples of self-similar anatomies include the arterial and
venous trees, the branching of certain cardiac muscle bundles, as well as the ramifying

tracheobronchial tree and His-Purkinje network.
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Figure 3. Left, schematic of a tree-like fractal has self-similar branchings such that the small
scale (magnified) structure resembles the large scale form. Right, a fractal process such as heart
rate regulation generates fluctuations on different time scales (temporal "magnifications") that
are statistically self-similar. (Adapted from Goldberger AL. Non-linear dynamics for clinicians:
chaos theory, fractals, and complexity at the bedside. Lancet 1996;347:1312-1314.)



From a mechanistic viewpoint, these self-similar cardiopulmonary structures all serve a
common physiologic function: rapid and efficient transport over a complex, spatially
distributed system. In the case of the ventricular electrical conduction system, the
quantity transported is the electrical stimulus regulating the timing of cardiac contraction
(31). For the vasculature, fractal branchings provide a rich, redundant network for
distribution of O2 and nutrients and for the collection of CO2 and other metabolic waste
products. The fractal tracheo-bronchial tree provides an enormous surface area for
exchange of gases at the vascular-alveolar interface, coupling pulmonary and cardiac
function (30). Fractal geometry also underlies other important aspects of cardiac
function. Peskin and McQueen (32) have elegantly shown how fractal organization of
connective tissue in the aortic valve leaflets relates to the efficient distribution of
mechanical forces. A variety of other organ systems contain fractal structures that serve
functions related to information distribution (nervous system), nutrient absorption

(bowel), as well collection and transport (biliary duct system, renal calyces) (2, 3, 30).

E. Scaling in Health and its Breakdown with Disease

An important extension of the fractal concept was the recognition that it applies not just
to irregular geometric or anatomic forms that lack a characteristic (single) scale of
length, but also to complex processes that lack a single scale of time (29, 33). Fractal
processes generate irregular fluctuations on multiple time scales, analogous to fractal
objects that have wrinkly structure on different length scales. Furthermore, such
temporal variability is statistically self-similar. A crude, qualitative appreciation for the
self-similar nature of fractal processes can be obtained by plotting the time series in
question at different "magnifications," i.e., different temporal resolutions. For example,
Fig. 3 plots the time series of heart rate from a healthy subject on three different scales.
All three graphs have an irregular ("wrinkly") appearance, reminiscent of a coastline or
mountain range. The irregularity seen on different scales is not visually distinguishable,
an observation confirmed by statistical analysis (34, 35). The roughness of these time
series, therefore, possesses a self-similar (scale-invariant) property.

Since scale-invariance appears to be is a general mechanism underlying many
physiological structures and functions, one can adapt new quantitative tools derived
from fractal mathematics for measuring healthy variability. Complex fluctuations with the
statistical properties of fractals have not only been described for heart rate variability,
but also for fluctuations in respiration (36), systemic blood pressure (37), human gait

(38) and white blood cell counts (39), as well as certain ion channel kinetics (3).



Furthermore, if scale-invariance is a central organizing principle of physiological
structure and function, we can make a general, but potentially useful prediction about
what might happen when these systems are severely perturbed. If a functional system
is self-organized in such a way that it does nof have a characteristic scale of length or
time, a reasonable anticipation would be a breakdown of scale-free structure or
dynamics with pathology (35). How does a system behave after such a pathologic
transformation? The antithesis of a scale-free (fractal) system (i.e., one with multiple
scales) is one that is dominated by a single frequency or scale. A system that has only
one dominant scale becomes especially easy to recognize and characterize because
such a system is by definition periodic - it repeats its behavior in a highly predictable
(regular) pattern (Fig. 4). The theory underlying this prediction may account for a clinical
paradox: namely, that a wide range of ilinesses are associated with markedly periodic
(regular) behavior even though the disease states themselves are commonly termed
"dis-orders" (39).
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Figure 4. Breakdown of a fractal physiological control mechanism can lead ultimately either to a
highly periodic output dominated by a single scale or to uncorrelated randomness. The top heart
rate time series is from a healthy subject; bottom left is from a subject with heart failure; and
bottom right from a subject with atrial fibrillation. (Adapted from Goldberger AL. Non-linear
dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet
1996;347:1312-1314.)
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ll. Fractal Scaling of the Heartbeat in Health and its

Breakdown with Disease

A. Periodic Disease and the Loss of Fractal Complexity

The appearance of highly periodic dynamics in many disease states is one of
the most compelling examples of the notion of complexity loss in disease (40).
Complexity here refers specifically to a multiscale, fractal-type of variability in
structure or function. Many disease states are marked by less complex
dynamics than those observed under healthy conditions. This de-
complexification of systems with disease appears to be a common feature of
many pathologies, as well as of aging (40). When physiologic systems become
less complex, their information confentis degraded (41). As a result, they are
less adaptable and less able to cope with the exigencies of a constantly
changing environment. To generate information, a system must be capable of
behaving in an unpredictable fashion (2, 42). In contrast, a highly predictable,
regular output (i.e., a sine wave) is information-poor since it monotonously
repeats its activity. (The most extreme example of complexity loss would be the
total absence of variability - a straightline output.)

Quantitative assessment of periodic oscillations can be obtained by analyzing
the time series of interest with a variety of standard mathematical tools. For
systems producing a highly periodic output, the most widely used methods are
based on spectral analysis. Remarkably, the time series of many severely
pathologic systems have a nearly sinusoidal appearance; the spectrum shows a
dominant peak at this characteristic frequency. An example is the heart rate
variability sometimes observed in patients with severe congestive heart failure
(Fig. 1) (43, 44) or with fetal distress syndromes (45). In contrast, systems with a
fractal output (such as normal heart rate variability) show a type of broadband
spectrum which includes many different frequencies (scales).

Probably the first explicit description of the concept of periodic diseases was
provided over 30 years ago by Dr. Hobart Reimann (46). He called attention to a

number of conditions in which the disease process itself could be shown to fare
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or recuron a regular basis of days to months; ranging from certain forms of
arthritis to some mental illnesses and hereditary diseases, such as familial
Mediterranean fever. In the late 1970s, Michael Mackey and Leon Glass (47, 48)
helped to rekindle interest in this dormant field when they introduced the term
dynamical disease to encompass the types of periodic syndrome Reimann had
catalogued, as well as irregular dynamics thought possibly to represent
deterministic chaos.

Reimann's original list was premised on the assumption that periodic conditions
were somewhat unique, and even idiosyncratic, in clinical medicine. However, to
the extent that healthy function is often characterized by a multi-scale fractal
complexity, we would anticipate that the emergence of single-scale (i.e., non-
fractal) states might be considerably more common, if not ubiquitous, in
pathophysiology. Indeed, a recent survey of the literature (49) indicates that
Reimann, rather than compiling a list of the exceptional, was more likely
sampling a widespread, even generic manifestation of the dynamics of disease.
From the most general perspective, the practice of bedside diagnosis itself
would be impossible without the loss of complexity and the emergence of
pathologic periodicities. To a large extent, it is these periodicities and highly-
structured patterns - the breakdown of multi-scale fractal complexity under
pathologic conditions - that allow clinicians to identify and classify many
pathologic features of their patients. Familiar examples include periodic tremors
in neurologic conditions, AV Wenckebach patterns, the "sine-wave" ECG pattern
in hyperkalemia, manic-depressive alterations, and cyclic breathing patterns in

heart failure.
B. Irregular Dynamics and the Breakdown of Fractal Mechanisms

While fractals are irregular, not all irregular structures or erratic time series are
fractal. A key feature of the class of fractals seen in biology is a distinctive type
of long-range order. This property generates corre/ations that extend over many
scales of space or time. For complex processes, fractal long-range correlations
are the mechanism underlying a "memory" effect; the value of some variable,

e.g., heart rate at a particular time, is related not just to immediately preceding
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values, but to fluctuations in the remote past. Certain pathologies are marked by
a breakdown of this long-range organization property, producing an uncorrelated
randomness similar to "white noise." An example is the erratic ventricular
response in atrial fibrillation over relatively short time scales. Peng et al. (50)
have recently described a simple algorithm for quantifying the breakdown of

long-range (fractal) correlations in physiological time series.
C. Future Applications

Practical applications of nonlinear dynamics are likely within the next few years.
Probably the first bedside implementations will be in physiological monitoring. A
number of indices derived from chaos theory have shown promise in forecasting
subjects at high risk of electrophysiologic or hemodynamic instability, including

e automated detection of the onset and end of pathologic low frequency (<.10 Hz) heart

rate oscillations (Figs 1, 2 and 4) (43, 52-59);

e detection of subtle ST-T alternans (17, 51);

e detection of a breakdown in fractal scaling with disease and aging (43); and

e quantification of differences or changes in the nonlinear complexity or dimension of a

physiological time series (59, 60).

In addition to these diagnostic applications, perhaps the most exciting prospects
are related to novel therapeutic interventions. An important recent finding is that
certain mathematical or physical systems with complex dynamics can be
controlled by properly timed external stimuli: chaotic dynamics can be made
more regular (chaos control) and periodic ones can be made chaotic (chaos
anti-control) (61-63). One proposal, based on the earlier notion that certain
arrhythmias, particularly ventricular fibrillation, represent cardiac chaos, is to
develop chaos control algorithms to electrically pace the heart beat back to sinus
rhythm (63). A more recent proposal is to use chaos anti-control protocols to
treat or to prevent cardiac arrhythmias or epilepsy based on the hypothesis that
restoration of a kind chaotic-like variability may actually be advantageous (62).
Chaos theory also holds promise for illuminating a number of major problems in
contemporary physiology and molecular biology. Nonlinear wave mechanisms
may underlie certain types of reentrant ventricular tachyarrhythmias (6, 7).

Appreciation for the rich nonlinearity of physiological systems may have
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relevance for modeling enormously complicated signal-transduction cascades
involved, for example, in neuroautonomic dynamics in which interactions and
"cross-talk" occur over a wide range of temporal and spatial scales, as well as
for understanding complex pharmacologic effects. Fractal analysis of long DNA
sequences has recently revealed that non-coding, but nof coding sequences
possess long-range correlations among nucleotides (64). This finding has
implications for possible functions of introns as well as for understanding
molecular evolution (65) and developing new methods for distinguishing coding
from non-coding sections of long DNA sequences (66). Findings from nonlinear
dynamics have also challenged conventional mechanisms of physiological
control based on classical homeostasis, which presumes that healthy systems
seek to attain a constant steady state. /n confrast, nonlinear systems with fractal
dynamics, such as the neuroaufonomic mechanisms regulating heart rate
variability, behave as if they were driven far from equilibrium under basal
conditions. This kind of complex variability, rather than a regular homeostatic
steady state, appears fo define the free-running function of many biological
systems (Fig. 1) (2, 39). Finally, a fundamental methodologic principle
underlying these new applications and interpretations is the importance of
analyzing continuously sampled variations in physiological output, such as heart
rate, and not simply relying on averaged values or measures of variance.
Dynamical analysis demonstrates that there is often hidden information in
physiological time series and that certain fluctuations previously considered

"noise" actually represent important signals (67-70).
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Table 1
Nonlinear Mechanisms and Manifestations

Abrupt Changes (10)

Bifurcations (1, 9)
Intermittency / Bursting (9, 10)
Bistability; Multistability (11)
Phase transitions

Hysteresis (12)
Nonlinear Oscillations (1, 2)

Limit cycles

Phase resetting
Entrainment
Pacemaker annihilation

Fractals (2, 3)

Scale-invariance
Long-range correlations
Self-organized criticality
Diffusion limited aggregation

Alternans (9)

Nonlinear waves: spiral; scroll (6, 7)

Complex periodic cycles; quasiperiodicities (13)
Stochastic resonance (14)

Time irreversibility

Chaos
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